Gaussian 积分

考虑如下形式积分,其中 $A$ 为特征值实部大于零的对称阵,因此可对角化

$$Z(b)=\int \text{d}^n x\;\exp\left(-\frac{1}{2}x^T A x+b^T x\right)$$

若 $b\neq 0$,则有

$$-\frac{1}{2}x^T A x+b^T x=\frac{1}{2}b^T A^{-1} b-\frac{1}{2}(x-A^{-1}b)^T A(x-A^{-1}b)$$

$$Z(b)=\sqrt{\frac{(2\pi)^n}{\det{A}}}\exp(\frac{1}{2}b^T A^{-1} b)$$

由Gaussian积分可计算关联函数的离散模拟

$$\begin{aligned}\ev{x_{i_1}x_{i_2}\cdots x_{i_m}}&=\frac{\displaystyle\int\text{d}^n x\;x_{i_1}x_{i_2}\cdots x_{i_m}\exp(-\frac{1}{2}x^T A x)}{\displaystyle\int\text{d}^n x\;\exp(-\frac{1}{2}x^T A x)}\\&=\left.\frac{1}{Z(0)}\frac{\partial}{\partial b_{i_1}}\cdots\frac{\partial}{\partial b_{i_m}}Z(b)\right|_{b=0}\end{aligned}$$

因此两点关联函数即传播子可写作

$$\ev{x_i x_j}=(A^{-1})_{ij}$$

奇数点关联函数为零,偶数点关联函数为所有可能的两点关联函数乘积求和

$$\ev{x_1 x_2 x_3 x_4}=\ev{x_1 x_2}\ev{x_3 x_4}+\ev{x_1 x_3}\ev{x_2 x_4}+\ev{x_1 x_4}\ev{x_2 x_3}$$

Boson OPE

Euclidean平面上无质量自由Boson作用量如下

$$S=\frac{g}{2}\int\text{d}^2 x\;\partial_\mu\varphi\partial^\mu\varphi$$

由Gaussian积分可写出其传播子 $K(x,y)=A^{-1}(x,y)$

$$S=\frac{1}{2}\int\text{d}^2 x\;\text{d}^2 y\;\varphi(x)A(x,y)\varphi(y)\qquad A(x,y)=-g\;\delta(x-y)\Delta$$

$$\ev{\varphi(x)\varphi(y)}=-\frac{1}{4\pi g}\ln(x-y)^2+\text{const.}$$

用复坐标表示为

$$\ev{\varphi(z,\bar z)\varphi(w,\bar w)}=-\frac{1}{4\pi g}\left(\ln(z-w)+\ln(\bar z-\bar w)\right)+\text{const.}$$

考虑全纯场,求偏导可得 $\partial\varphi\partial\varphi$ OPE,此形式说明交换两个boson不改变关联函数

$$\partial\varphi(z)\partial\varphi(w)\sim -\frac{1}{4\pi g}\frac{1}{(z-w)^2}$$

写出能动张量

$$T_{\mu\nu}=g\left(\partial_\mu\varphi\partial_\nu\varphi-\frac{1}{2}\eta_{\mu\nu}\partial_\rho\varphi\partial^\rho\varphi\right)$$

其量子化版本可用复变量表示为以下形式,其中正规序 $::$ 是为保证能动张量真空期望为零

$$T(z)=-2\pi g:\partial\varphi\partial\varphi:=-2\pi g\lim_{w\to z}(\partial\varphi(z)\partial\varphi(w)-\ev{\partial\varphi(z)\partial\varphi(w)})$$

由Wick定理计算 $T\partial\varphi$ OPE

$$\begin{aligned}T(z)\partial\varphi(w)&=-2\pi g:\partial\varphi(z)\partial\varphi(z):\partial\varphi(w)\\&\sim -4\pi g:\partial\varphi(z)\overbracket{\partial\varphi(z):\partial\varphi}(w)\\&\sim \frac{\partial\varphi(z)}{(z-w)^2}\end{aligned}$$

将 $\partial\varphi(z)$ 在 $w$ 附近展开,得到 $T\partial\varphi$ OPE表达式,其形式说明 $\partial\varphi$ 为共形维数为 $1$ 的初级场,与 $\varphi$ 为无旋标量场相符

$$T(z)\partial\varphi(w)\sim \frac{\partial\varphi(w)}{(z-w)^2}+\frac{\partial^2_w\varphi(w)}{(z-w)}$$

继续由Wick定理计算 $TT$ OPE,可知Boson中心荷 $c=1$

$$\begin{aligned}T(z)T(w)&=4\pi^2 g^2:\partial\varphi(z)\partial\varphi(z)::\partial\varphi(w)\partial\varphi(w):\\&\sim\frac{1/2}{(z-w)^2}-\frac{4\pi g:\partial\varphi(z)\partial\varphi(w):}{(z-w)^2}\\&\sim \frac{1/2}{(z-w)^2}+\frac{2T(w)}{(z-w)^2}+\frac{\partial T(w)}{(z-w)}\end{aligned}$$

Fermion OPE

Euclidean平面上自由Majorana fermion作用量为

$$S=\frac{g}{2}\int\text{d}^2 x\;\Psi^\dagger\gamma^0\gamma^\mu\partial_\mu\Psi$$

取Euclidean平面上Clifford代数的如下表示

$$\{\gamma^\mu,\gamma^\nu\}=2\eta^{\mu\nu}$$

$$\gamma^0=\begin{pmatrix}0&1\\1&0\end{pmatrix}\qquad \gamma^1=i\begin{pmatrix}0&-1\\1&0\end{pmatrix}$$

$$\gamma^0\gamma^\mu\partial_\mu=2\begin{pmatrix}\partial_{\bar z}&0\\0&\partial_{z}\end{pmatrix}$$

令 $\Psi=(\psi,\bar\psi)^T$,作用量可写为以下形式,其经典运动方程的解为任意全纯场 $\psi$

$$S=g\int\text{d}^2 x\;(\bar\psi\partial\bar\psi+\psi\bar\partial\psi)$$

$$\partial\bar\psi=0\qquad\bar\partial\psi=0$$

根据Majorana条件 $\Psi^*=\Psi$,将作用量写为二次型,可知传播子 $K_{ij}(x,y)=\ev{\Psi_i(x)\Psi_j(y)}$ 满足以下方程

$$S=\frac{1}{2}\int\text{d}^2 x\;\text{d}^2 y\;\Psi_i(x)A_{ij}(x,y)\Psi_j(y)\qquad A_{ij}(x,y)=g\;\delta(x-y)(\gamma^0\gamma^\mu)_{ij}\partial_\mu$$

$$g\;\delta(x-y)(\gamma^0\gamma^\mu)_{ik}\partial_\mu K_{kj}(x,y)=\delta(x-y)\delta_{ij}$$

由以下等式,将方程写为矩阵形式

$$\frac{1}{\pi}\partial_{\bar z}\frac{1}{z}=\delta(\boldsymbol{x})\qquad \frac{1}{\pi}\partial_{ z}\frac{1}{\bar z}=\delta(\boldsymbol{x})$$

$$2g\begin{pmatrix}\partial_{\bar z}&0\\0&\partial_{z}\end{pmatrix}\begin{pmatrix}\ev{\psi(z,\bar z)\psi(w,\bar w)}&\ev{\psi(z,\bar z)\bar\psi(w,\bar w)}\\\ev{\bar\psi(z,\bar z)\psi(w,\bar w)}&\ev{\bar\psi(z,\bar z)\bar\psi(w,\bar w)}\end{pmatrix}=\frac{1}{\pi}\begin{pmatrix}\displaystyle\partial_{\bar z}\frac{1}{z-w}&0\\0&\displaystyle\partial_{z}\frac{1}{\bar z-\bar w}\end{pmatrix}$$

比较可得关联函数

$$\ev{\psi(z,\bar z)\psi(w,\bar w)}=\frac{1}{2\pi g}\frac{1}{z-w}\qquad\ev{\bar\psi(z,\bar z)\bar\psi(w,\bar w)}=\frac{1}{2\pi g}\frac{1}{\bar z-\bar w}$$

$$\ev{\psi(z,\bar z)\bar\psi(w,\bar w)}=0\qquad \ev{\bar\psi(z,\bar z)\psi(w,\bar w)}=0$$

$$\ev{\partial_z\psi(z,\bar z)\psi(w,\bar w)}=-\frac{1}{2\pi g}\frac{1}{(z-w)^2}\qquad \ev{\partial_z\psi(z,\bar z)\partial_w\psi(w,\bar w)}=-\frac{1}{\pi g}\frac{1}{(z-w)^3}$$

考虑全纯场 $\psi\psi$ OPE,此形式说明交换两个fermion改变关联函数符号

$$\psi(z)\psi(w)\sim\frac{1}{2\pi g}\frac{1}{z-w}$$

计算复变量下能动张量,其并不对称,在应用经典运动方程之后回归经典对称情况

$$T^{\alpha\beta}=2g\begin{pmatrix}\bar\psi\bar\partial\bar\psi&-\psi\bar\partial\psi\\-\bar\psi\partial\bar\psi&\psi\partial\psi\end{pmatrix}$$

能动张量量子化全纯版本如下

$$T(z)=-\pi g:\psi\partial\psi:=-\pi g\lim_{w\to z}(\psi(z)\partial\psi(w)-\ev{\psi(z)\partial\psi(w)})$$

由Wick定理计算 $T\psi$ OPE,以下形式说明 $\psi$ 为共形维数为 $1/2$ 的初级场

$$\begin{aligned}T(z)\psi(w)&=-\pi g:\psi(z)\partial\psi(z):\psi(w)\\&\sim\frac{1}{2}\frac{\partial\psi(z)}{z-w}+\frac{1}{2}\frac{\psi(z)}{(z-w)^2}\\&\sim\frac{\psi(w)/2}{(z-w)^2}+\frac{\partial\psi(w)}{z-w}\end{aligned}$$

继续计算 $TT$ OPE,可知Fermion中心荷 $c=1/2$

$$\begin{aligned}T(z)T(w)&=\pi^2g^2:\psi(z)\partial\psi(z)::\psi(w)\partial\psi(w):\\&\sim\frac{1/4}{(z-w)^4}+\frac{2T(w)}{(z-w)^2}+\frac{\partial T(w)}{(z-w)}\end{aligned}$$

Ghost OPE

考虑弦论中以下作用量及经典运动方程,其中 $b_{\mu\nu}$ 为无迹对称张量,$c^\mu$ 与 $b_{\mu\nu}$ 均为 fermion,但并不是基本动力学场,其仅代表泛函积分中参数变化所产生的Jacobian行列式,因此称其为重参化鬼场

$$S=\frac{g}{2}\int \text{d}^2 x\; b_{\mu\nu}\partial^\mu c^\nu\qquad A_{\alpha}^{\mu\nu}(x,y)=\frac{1}{2}g\;\delta_{\alpha}^\nu\delta(x-y)\partial^\mu$$

$$\partial^\mu b_{\mu\nu}=0\qquad \partial^\mu c^\nu+\partial^\nu c^\mu=0$$

用复变量表示,$b_{\alpha\beta}$ 仅有 $b_{zz},b_{\bar z\bar z}$ 两个非零分量

$$S=g\int \text{d}^2 x\; (b\bar\partial c+\bar b\partial\bar c)$$

$$c=c^z\quad \bar c=c^\bar{z}\qquad b=b_{zz}\quad \bar b=b_{\bar z\bar z}$$

$$\partial\bar c=0\qquad\bar\partial c=0\qquad\partial c=-\bar\partial\bar c$$

$$\partial\bar b=0\qquad\bar\partial b=0$$

令 $\Psi=(b,\bar b,c,\bar c)^T$,将作用量写为二次型

$$S=\frac{g}{2} \int \text{d}^2 x\;(b,\bar b,c,\bar c)\begin{pmatrix}0&0&\bar\partial&0\\0&0&0&\partial\\\bar\partial&0&0&0\\0&\partial&0&0\end{pmatrix}\begin{pmatrix}b\\\bar b\\ c\\\bar c\end{pmatrix}=\frac{1}{2}\int \text{d}^2 x\;\text{d}^2 y\;\Psi_{i}(x)A_{ij}(x,y)\Psi_{j}(y)$$

$$A_{ij}(x,y)=g\;\delta(x-y)\begin{pmatrix}0&0&\bar\partial&0\\0&0&0&\partial\\\bar\partial&0&0&0\\0&\partial&0&0\end{pmatrix}$$

由 $A_{ij}(x,y)$ 形式可直接写出传播子与 $bc$ OPE

$$\ev{b(z)c(w)}=\frac{1}{\pi g}\frac{1}{z-w}\qquad \ev{c(z)b(w)}=\frac{1}{\pi g}\frac{1}{z-w}$$

$$\ev{b(z)\partial c(w)}=\frac{1}{\pi g}\frac{1}{(z-w)^2}\qquad \ev{\partial b(z)c(w)}=-\frac{1}{\pi g}\frac{1}{(z-w)^2}$$

$$b(z)c(w)\sim \frac{1}{\pi g}\frac{1}{z-w}$$

计算能动张量,其并不对称,可借助经典运动方程,添加一项散度让其反对称成分对称

$$T^{\mu\nu}_c=\frac{g}{2}(b^{\mu\alpha}\partial^\nu c_\alpha-\eta^{\mu\nu}b^{\alpha\beta}\partial_\alpha c_\beta)$$

$$\frac{1}{2}(T^{\mu\nu}_c-T^{\nu\mu}_c)=\frac{g}{4}(b^{\mu\alpha}\partial^\nu c_\alpha-b^{\nu\alpha}\partial^\mu c_\alpha)$$

$$B^{\rho\mu\nu}=-\frac{g}{2}(b^{\nu\rho}c^\mu-b^{\nu\mu}c^\rho)\qquad \partial_\rho B^{\rho\mu\nu}=\frac{g}{2}(b^{\nu\alpha}\partial^\mu c_\alpha+\partial_\alpha b^{\mu\nu} c^\alpha)$$

$$T^{\mu\nu}_B=\frac{g}{2}(b^{\mu\alpha}\partial^\nu c_\alpha+b^{\nu\alpha}\partial^\mu c_\alpha+\partial_\alpha b^{\mu\nu} c^\alpha-\eta^{\mu\nu}b^{\alpha\beta}\partial_\alpha c_\beta)$$

其量子化全纯版本为

$$T(z)=\pi g:(2\partial c\;b+c\partial b):$$

计算 $Tc$ 与 $Tb$ OPE,可知 $b,c$ 均为初级场,$c$ 共形维数为 $-1$,$b$ 共形维数为 $2$

$$\begin{aligned}T(z)c(w)&=\pi g:[2\partial c(z)\;b(z)+c(z)\partial b(z)]:c(w)\\&\sim -\frac{c(z)}{(z-w)^2}+\frac{2\partial c(z)}{z-w}\\&\sim-\frac{c(w)}{(z-w)^2}+\frac{\partial c(w)}{z-w}\end{aligned}$$

$$\begin{aligned}T(z)b(w)&=\pi g:[2\partial c(z)\;b(z)+c(z)\partial b(z)]:b(w)\\&\sim \frac{2b(z)}{(z-w)^2}-\frac{\partial b(z)}{z-w}\\&\sim\frac{2b(w)}{(z-w)^2}+\frac{\partial b(w)}{z-w}\end{aligned}$$

计算 $TT$ OPE,可知重参化鬼场中心荷 $c=-26$

$$\begin{aligned}T(z)T(w)&=\pi^2 g^2:[2\partial c(z)\;b(z)+c(z)\partial b(z)]::[2\partial c(w)\;b(w)+c(w)\partial b(w)]:\\&\sim\frac{-13}{(z-w)^4}+\frac{2T(w)}{(z-w)^2}+\frac{\partial T(w)}{z-w}\end{aligned}$$

若保持 $bc$ OPE不变,将能动张量减去一项全导数 $:\partial(cb):$,称为简单鬼场系统

$$T(z)=\pi g:\partial c\; b:$$

计算OPE,可知初级场 $c$ 共形维数为 $0$,$b$ 共形维数为 $1$,简单鬼场中心荷 $c=-2$

$$T(z)c(w)\sim \frac{\partial c(w)}{z-w}$$

$$T(z)b(w)\sim \frac{b(w)}{(z-w)^2}+\frac{\partial b(w)}{z-w}$$

$$T(z)T(w)\sim \frac{-1}{(z-w)^4}+\frac{2T(w)}{(z-w)^2}+\frac{\partial T(w)}{z-w}$$

能动张量另一定义

考虑无穷小坐标变换 $x^\mu\mapsto x’^\mu+\epsilon^\mu(x)$ 引起的作用量变分,假定能动张量对称(虽然会出现非对称情况,但在经典运动方程下额外项变为零,结果上对Ward等式无影响,因此可忽略)

$$\begin{aligned}\delta S&=\int\text{d}^d x\;T^{\mu\nu}\partial_\mu\epsilon_\nu\\&=\frac{1}{2}\int\text{d}^d x\;T^{\mu\nu}(\partial_\mu\epsilon_\nu+\partial_\nu\epsilon_\mu)\end{aligned}$$

考虑度规变化

$$\begin{aligned}g’_{\mu\nu}&=\frac{\partial x^\alpha}{\partial x’^{\mu}}\frac{\partial x^\beta}{\partial x’^{\nu}}g_{\alpha\beta}\\&=(\delta_\mu^\alpha-\partial_\mu\epsilon^\alpha)(\delta_\nu^\beta-\partial_\nu\epsilon^\beta)g_{\alpha\beta}g_{\alpha\beta}\\&=g_{\mu\nu}-(\partial_\mu\epsilon_\nu+\partial_\nu\epsilon_\mu)\end{aligned}$$

用度规变分表示作用量变分,可得平直时空能动张量的另一定义

$$\delta S=-\frac{1}{2}\int\text{d}^d x\; T^{\mu\nu}\delta g_{\mu\nu}$$

对于非平直时空,可对能动张量的度规变分定义作如下自然推广

$$\delta S=-\frac{1}{2}\int\text{d}^d x\; \sqrt{g}\;T^{\mu\nu}\delta g_{\mu\nu}$$

考虑非平直时空自由标量场 $\varphi$ 作用量

$$\begin{aligned} S&=\int\text{d}^d x\;\sqrt{g}\;\mathcal{L}\\&=\frac{1}{2}\int\text{d}^d x\;\sqrt{g}(g^{\mu\nu}\partial_\mu\varphi\partial_\nu\varphi+m^2\varphi^2)\end{aligned}$$

由以下等式计算 $\delta\sqrt{g}$

$$\det{A}=e^{\Tr\;\ln{A}}\qquad\delta g^{\mu\nu}=-g^{\alpha\mu}g^{\beta\nu}\delta g_{\alpha\beta}$$

$$\delta\sqrt{g}=\frac{1}{2}\sqrt{g}g^{\mu\nu}\delta g_{\mu\nu}$$

根据度规变分定义计算能动张量,发现其与正则定义形式相同,此定义的好处是能动张量自然满足对称条件,但是得到其显式表示的过程需要更为复杂的计算

$$T^{\mu\nu}=-g^{\mu\nu}\mathcal{L}+\partial^\mu\varphi\partial^\nu\varphi$$

若用标架 $e^a_\mu$ 替代度规,可得能动张量的标架变分定义

$$e^a=e^a_\mu\dd x^\mu\qquad e=\det{e_\mu^a}$$

$$e_\mu^a e_\nu^b g^{\mu\nu}=\eta^{ab}\qquad g_{\mu\nu}=\eta_{ab} e^a_\mu e^b_\nu$$

$$\delta S=-\int\text{d}^d x\;e\;T^\mu_a\delta e^a_\mu$$

考虑非平直时空的真空泛函,由其定义联通泛函 $W[g]$

$$Z[g]=\int[\dd\Phi]_g\exp(-S[\Phi,g])=\exp(-W[g])$$

真空泛函对度规变分可得

$$\begin{aligned}Z[g+\delta g]&=\int [\dd\Phi]_{g+\delta g}\exp(-S[\Phi,g+\delta g])\\&=\int[\dd\Phi]_g\left(1+\frac{1}{2}\int\text{d}^d x\sqrt{g}\delta g_{\mu\nu}T^{\mu\nu}\right)\exp(-S[\Phi,g])\\&=Z[g]+\frac{1}{2}Z[g]\int \text{d}^d x\;\sqrt{g}\;\delta g_{\mu\nu}\ev{T^{\mu\nu}}\end{aligned}$$

$$\delta W[g]=-\frac{\delta Z[g]}{Z[g]}=-\frac{1}{2}\int\text{d}^d x\sqrt{g}\;\delta g_{\mu\nu}\ev{T^{\mu\nu}}$$

若用标架代替度规,则有

$$\delta W[e]=-\int\text{d}^d x\; e\;\delta e_\mu^a\ev{T_a^\mu}$$

中心荷物理意义

中心荷也被称为共形异常,其反映了系统在由于宏观尺度的引入(例如周期性边界条件)所导致的共形对称软破缺下的行为

考虑整个复平面 $z$ 上的共形场论,用以下变换将复平面映到周长为 $L$ 的圆柱面上

$$z\mapsto w=\frac{L}{2\pi}\ln{z}$$

由能动张量变换规律,复平面与圆柱面上能动张量具有以下关系

$$T_\text{cyl.}(w)=\left(\frac{2\pi}{L}\right)^2\left[T_\text{pl.}(z)-\frac{c}{24}\right]$$

假设复平面上真空能量密度 $\ev{T_\text{pl.}}$ 为零,则圆柱面上真空能量密度为以下非零值,可见中心荷正比于Casimir能,即由于圆柱面上周期性边界条件导致的真空能量密度变化,当宏观尺度 $L$ 趋于无穷,则Casimir能自然趋于零

$$\ev{T_\text{cyl.}(w)}=-\frac{c\pi^2 }{6L^2}$$

考虑度规变化时自由能 $F$,即联通泛函 $W$ 的变分

$$\delta F=-\frac{1}{2}\int\text{d}^d x\sqrt{g}\;\delta g_{\mu\nu}\ev{T^{\mu\nu}}$$

对圆柱面周长作以下无穷小伸缩

$$L\mapsto (1+\varepsilon)L\qquad w^0\mapsto (1+\varepsilon)w^0$$

$$\epsilon^\mu=\varepsilon w^0\delta_{\mu 0}\qquad\delta g_{\mu\nu}=-2\varepsilon\delta_{\mu 0}\delta_{\nu 0}$$

$$\ev{T^{00}}=\frac{\pi c}{6L^2}\qquad\delta F=\int\dd w^0\dd w^1\;\frac{\pi c}{6L^2}\frac{\delta L}{L}$$